Disclaimer:

Presentation slides from the Rare Disease Workshop Series are posted by the EveryLife Foundation for Rare Diseases for educational purposes only. They are for use by drug development professionals and statisticians, and are not to be used to guide the prescribing or use of any of the drugs mentioned in the slides. To obtain information on a particular drug, refer to the drug labeling. Do not reproduce or distribute the slides (full set or any portion of) without the permission of the author.
X-linked Adrenoleukodystrophy: rationale and current assessment of markers to track progression

November 8, 2011

Kathleen M. Zackowski, PhD
Assistant professor
Depts. of Physical Medicine and Rehabilitation, Neurology
Kennedy Krieger Institute / Johns Hopkins University School of Medicine
Adrenoleukodystrophy (ALD)

X-linked disorder - Xq28
incidence 1:17,000, all races affected

Peroxisomal ATPase Binding Cassette Protein (ABCD1)
Defect in peroxisomal beta oxidation

Accumulation of very long chain fatty acids (VLCFA)
Affects myelin, adrenal cortex, Leydig cells of the testes

Igarashi et al.
J Neurochem 26:851-860, 1976
Variable Manifestations (phenotypes) of ALD and Relative Frequency

- **Cerebral (35%)**
 - Diffuse inflammatory demyelination, rapid progression.
 - Childhood form (onset 4-8 years) most common

- **Adrenomyeloneuropathy (AMN) (40-65%)**
 - Distal axonopathy mainly in spinal cord.
 - Paraparesis in young adults, progress over decades
 - Cerebral disease occurs in 19-40%

- **Addison Disease only (20-30% at onset)**
 - Most develop AMN later

- **Asymptomatic**

- **>50% of heterozygous women develop AMN in adult years with increase incidence with age.**

Neither the gene defect nor the biochemical abnormality predicts the phenotype. A genetic modifier has been postulated.
Role of VLCFA in pathogenesis

- Extremely insoluble in water and alters properties of membranes
- Viscosity of red cell membranes is increased
- Cultured adrenocortical cells—added VLCFA increased microviscosity of membranes and decreased cortisol release
- Inclusion in adrenocortical cells
- Binding with albumin is altered
- Inclusion of C26:0 in model membrane perturbs structure and stability
- Impairs stability of axonal or myelin membranes?
- Role as a trigger of immune response?
Lorenzo’s Oil and low fat diet

- Dietary erucic acid therapy for X-linked adrenoleukodystrophy (Rizzo et al 1989)
 - 4:1 volume of oleic to erucic acid (Lorenzo’s oil)
 - Plasma C26:0 decreased on GTE/GTO in 4-8 weeks
- 12 newly diagnosed cerebral individuals for 2-19 months.
 - Majority showed deterioration
- Issues
 - LO did lower VLCFA in plasma
 - Clinical response was less than encouraging
 - Could require months; myelin composition may not have changed
Effect of Lorenzo’s oil on manifestations of ALD

• No effect on childhood cerebral disease
• Adrenomyeloneuropathy – no definitive answer
 – Cappa et al (1990) – cerebral demyelination in only 2/11 treated individuals
 – Aubourg et al (1993) (n=24); varying phenotypes including cerebral disease, boys, and heterozygotes; 9/14 men worsened
 – Van Geel et al (1999) (n=22); varying phenotypes including heterozygotes; generally progress
• All of these studies were uncontrolled
• Small number of individuals studied with a wide range of ages, disability, and phenotype
• Limited information on compliance and effective reduction of VLCFA
• In spite of these limits, the lack of clear improvement led to the presumption that oil was ineffective in all forms of ALD.
• Preventative effect on presymptomatic boys
Issues in studying AMN

Disease burden at presentation

Slow disease progression
Progression of disability occurs over decades

Limited markers
MRI
Clinical rating scales
Electrophysiologic studies

<table>
<thead>
<tr>
<th></th>
<th>Time from Diagnosis</th>
<th>Rankin Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>9.1±8.2</td>
<td>1.7±0.9</td>
</tr>
<tr>
<td>Last visit</td>
<td>16.2±8.9</td>
<td>2.9 ±1.1</td>
</tr>
</tbody>
</table>

Preventative therapy in AMN and Carriers

• Placebo-controlled Study
 – Diet and either GTO-GTE or a placebo
• Planned enrollment 120 men with “pure” AMN and 120 symptomatic carriers
• 4 year duration
• Yearly evaluation
 – Neurologic exam
 – MRI of brain and cervical spinal cord
 – Nutrition
 – Quantitative Motion analysis
• Outcome measures
 – Clinical status – Kurtzke FSS, EDSS, AADS
 • Correlated with reduction in C26:0 levels
 – Use of Quantitative functional measures and MRI
• Study related issues resulted in premature termination
Neuroimaging of the spine in AMN

- **AMN**
 - Affects spinal cord WM tracts
 - Slow, individualized progression
- **Why use Diffusion Tensor Imaging?**
 - DTI is sensitive to tissue microstructure
 - Use to assess relationship between spine and functional measures
DTI Acquisition & Analysis

• Philips 3T MRI
 – Body coil excitation, 16-channel neurovascular coil for reception

• DTI
 – Multi-slice spin echo with single-shot EPI
 – 5 avg. minimally weighted and 16 diffusion-weighted volumes (b = 500 s/mm²)
 – TR/TE = 3000/58 ms
 – Sense factor 2
 – Nominal resolution: 1.5 mm x 1.5 mm x 3 mm, 16 slices, 2 averages
 – Scan time: 1 min per average

DTISTudio – fiber tracking
 ROIs seed fiber tracts
 – Connects similar voxels
 – Angle < 60 deg.
 – FA value > 0.2
Clinical Evaluation

- Kurtzke Expanded Disability Scale (EDSS)
 - Focused only on scores 1 – 6.5

- Functional measures
 - Timed get up and go
 - Walking speed
 - Vibration sensation
 - Balance (eyes open feet apart)
 - Sit-to-stand
 - Hip flexion strength

<table>
<thead>
<tr>
<th></th>
<th>Number</th>
<th>Age</th>
<th>Age Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td>20</td>
<td>41.1 yrs</td>
<td>22 – 58 yrs</td>
</tr>
<tr>
<td>Women</td>
<td>20</td>
<td>52.1 yrs</td>
<td>39 – 68 yrs</td>
</tr>
</tbody>
</table>
Clinical Correlations: Men

Dorsal Column

a) $\lambda_\parallel (\mu m^2/ ms)$ vs. get-up-and-go (seconds)

- $r = 0.61$
- $p = 0.005$

b) $\lambda_\perp (\mu m^2/ ms)$ vs. balance (mm)

- $r = 0.64$
- $p = 0.007$
Magnetization Transfer Imaging in AMN Trials

MT weighted Images

Diagnosis (mean ± SD) (34.34 ± 1.03) (29.76 ± 1.03)
Heterozygotes (29.76 ± 1.03)
p < 0.001

Controls (26.82 ± 1.38)
p < 0.001

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>AMN (34.34 ± 1.03)</th>
<th>Heterozygotes (29.76 ± 1.03)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heterozygotes</td>
<td>p < 0.001</td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>p < 0.001</td>
<td>p < 0.001</td>
</tr>
</tbody>
</table>
Magnetization Transfer Imaging
Lorenzo oil Placebo trial

- MT MRI data were obtained in the dorsal column for each participant at baseline, 12 and 24 month time points.
- Defined ΔMT as the difference in mean MT value between baseline/12 months and baseline/24 months
- Positive ΔMT indicates greater abnormality at the 2nd time point [reflective of worsening]
- Negative ΔMT indicates less abnormality at the 2nd time point [reflective of normalization]
Conclusions on emerging imaging technologies in AMN and Lorenzo oil

- Strong correlation between tract-specific DTI-derived metrics and clinical dysfunction.
 - Stronger correlations in men than women
 - Magnetization Transfer Weighted Imaging demonstrated correlation with severity and longitudinally correlated with reduction in plasma very long chain fatty acids
- Ability to probe the structure-function relationship in patients with AMN may improve understanding of the pathologic abnormalities.
- Has promise for use in evaluating Lorenzo’s oil and other therapeutic interventions
 - May allow for shorter trials
 - Objective marker of disease
 - Ability to determine degree of disease burden
Acknowledgements

• Patients and their families
 • Ann Moser
 • Kathy Zackowski
 • Jennifer Keller
 • Seth Smith
 • Aliya Gifford
 • Richard Jones
 • Lena Bezman
 • Kim Hollandsworth
 • Annette Snitcher
 • Dinishia Pickford
 • Katy Gibbons
 • Steven Steinberg
 • Sakkubai Naidu
 • Rebecca Vaurio
 • Tara Palmiero

 • N. Hong Brereton
 • Ali Fatemi
 • Florian Eichler
 • Prachi Dubey
 • Asif Mahmood

 • Westat
 • Ros Hennessey
 • Robert Harris

 • Funding provided by NIH, GCRC, Myelin Project, ELA, ULF